The MODIS Collection 5 dark-target aerosol products: Level 3 Aggregation

Robert Levy Lorraine Remer, Ralph Kahn, Greg Leptoukh

AOD "Validated" over both ocean and land

What is global mean AOD?

- Modelers want to know...
- Useful for determining "trends" in global processes
- "Level 3" is gridded (1° x 1°) statistics of Level 2 (~ 10 km)
- Operationally, we produce
 - Daily (D3),
 - Eight-Day (E3)
 - Monthly (M3)

Global mean AOD from "Giovanni" monthly (M3) vs daily (D3) for 2003

- Spatial averages of Level 3 maps, using Equal Area weighting
- D3 : 'Mean' products; M3 : 'Mean_Mean' products
- D3 ≠ M3!! >10% difference!
- Due to pixel weighting for computing M3; clear sky bias

What happened? From L2 to D3

For each day and each 1° x 1° grid location, we collect the *i* L2 pixels and compute daily mean, with weights, *W*

$$\bar{\tau} = \sum_{i} W \tau / \sum_{i} W$$
 + Choices for W and which i's

Thus, increasing daily sampling from <10% (L2) to ~30% (D3)

From D3 to M3

For each month and each 1° x 1° grid location, collect the *j* D3 values and assign weights, *X*.

$$\frac{1}{\tau} = \sum_{j} X \frac{1}{\tau} / \sum_{j} X + \text{More Choices } \begin{cases} \text{Pixel thresholds} \\ \text{QA thresholds} \\ \text{Etc} \end{cases}$$

Two M3 products

- W=1, X=PC: "Mean_Mean"
- W=QC, X=PC: "QA_Mean_Mean"

PC = "Pixel Counts" or W/day
PC>5 per day to count for M3

Ocean: Effective_Optical_Depth_Average_Ocean_Mean_Mean

Land: Corrected Optical Depth Land Mean Mean

>75% of globe sampled per month

How to compute global mean

au M3-> and all decisions for aggregation weighting within

— D3-> and decisions for aggregation and weighting (simple, pixel counts, confidence?)

T L2-> Sampling VS global aerosol representation aerosol representation

- Many choices for aggregation and weighting
- Accentuate different aerosol/cloud features
- Accentuate different limitations of MODIS sampling

Choices are important

How should we compute "global" mean?

Even more choices: more results

"Reasonable" Choices:
Global means can vary by 40%
The "best" one is not known, yet

Conclusions

- It is *ridiculous* to consolidate the complexity of the global spatial patterns of aerosol into a *single global mean*.
- Data is never the absolute truth. A 'well-calibrated' measurement (radiance) has uncertainties. A 'validated' retrieved parameter (Level 2) compounds those uncertainties. Aggregations (Level 3) again compound uncertainties.
- Different aggregations stress different aspects of sampling, cloud and aerosol variability.
- There is much more work to do
 - Analyses of pixel counts, data confidence and regional dependencies, correlations with clouds
 - High level spatial statistics
 - Collaborative evidence (surface, aircraft, etc)
 - Model simulations
 - Integration with other satellite datasets (MISR, A-train, etc)